III Semester M.Sc. Degree Examination, December 2013/January 2014 (2010-11 (NS) Scheme) CHEMISTRY C-301 - OC : Organic Reaction Mechanisms

Time: 3 Hours
Max. Marks : 80
Instruction : Answer question No. 1 and any five of the remaining:

Answerany ten of the following :

1. a) The acetolysis of 7-norbornenyl tosylate (I) is faster than 7-norbornyl tosylate (II). Explain.

I

II
b) What is Haller-Bauer reaction? Give its mechanism.
c) Complete the following reaction and propose a suitable mechanism :

d) Write the products of bromination of 1-butene with NBS and indicate the major product.
e) Give the product and propose a mechanism :

f) Illustrate oxa-di-pi-methane rearrangement with an example.
P.T.O.
g) Give the product with correct stereochemistry and propose a mechanism for its formation.

h) Predict the product with correct stereochemistry :

i) Distinguish between antarafacial and suprafacial hydrogen shifts in sigmatropic rearrangements.
j) Complete the following :

k) Outline the mechanism for the oxidation of ethanol to acetaldehyde by NAD^{+}.
I) Write the steps involved in the following conversion.

Homocysteine $\xrightarrow{9-\text { methy } \mathrm{H}_{4} \mathrm{~F}}$ Methionine
2. a) Predict the products and suggest suitable mechanism for the following :
i) ? $\xrightarrow{\mathrm{Br}_{2} / \mathrm{h}^{+}} \stackrel{\text { 呙 }}{\mathrm{Br}_{2} / \mathrm{OH}}$?
ii)

b) Give an example each for $S_{E}{ }^{1}$ and $S_{E}{ }^{2}$ reaction with mechanism.
3. a) Arrange the following free radicals in the order of decreasing stability with justification
i) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2}$
ii)

iii)

iv) $\mathrm{NC}-\mathrm{CH}_{2}$
b) How will you bring about the following conversions? Propose a suitable mechanism.
i)

ii)

c) Give a brief account of Meerwein arylation.
4. a) What are the various processes involved in photochemical excitation reactions?

Explain neatly using Jablonski's diagram.
b) Predict the products with adequate explanation.
i)

ii)

5. a) Predict the product for the following :

b) Using molecular orbital correlation diagram show that [4+2] cycloaddition reaction is thermally allowed.
c) Explain why the following conversion is not possible.

6. a) Using FMO approach, show that whether thermal cyclization of ($4 n+2$) π electron system is conrotatory or disrotatory.
b) Using π-molecular orbital, predict whether the $(1,5)$ sigmatropic rearrangement is suprafacial or antarafacial under thermal condition.
c) Predict the product with mechanism :

7. Explain the mechanistic role of the following in biochemical reactions :
a) Biotin in the carboxylation reactions
b) Thiamine pyrophosphate in decarboxylation of α-keto acids.
c) Pyridoxal phosphate in elimination reaction of amino acids.

